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Abstract: A refined version of the algorithm for constructing all 0-1 integer solutions for linear 

Diophantine equations is introduced. The correctness and its polynomial time complexity is confirmed 

by a Monte Carlo experiment that uses the trivial simple combinatorics. An implementation of this 

algorithm proves the polynomial time solvability of many business decision and optimization problems 

that are currently considered as being intractable: bin packing and cutting stock, open-shop and job-

shop scheduling, production planning, dynamic storage allocation and many others. It is shown that 

all these problems admit polynomial time algorithms for their solution. An experimental proof of the 

important for the theory fact that every planar symmetric graph possesses at least one Hamiltonian 

circuit is given.  

   A much faster exact polynomial time algorithm for solving symmetric traveling salesman problems 

is suggested. The algorithm shows that such problems may have several optimal solutions. Numeric 

randomly generated instances with such solutions that can be used as test examples for newly 

developed algorithms are presented.  

   Results of this research present a reliable experimental proof of the fundamental equality P=NP. 
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1. Introduction  

   Stephen Cook (2005), p.1 wrote “the P versus NP problem is to determine whether every language 

accepted by some nondeterministic algorithm in polynomial time is also accepted by some 

(deterministic) algorithm in polynomial time”. He noted also that “the importance of the P vs NP 

question stems from the successful theories of NP-completeness and complexity-based cryptography, 

as well as the potentially stunning practical consequences of a constructive proof of P=NP”. Important 

questions related to this problem were mentioned first in the 1930s. During about 95 years 
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mathematicians tried to solve the problem, but even today “the experts and the scientific community 

does not seem of being able to decide if the P versus NP problem has been solved or not” (Kyritis 

(2021)).  

   Woeginger (2016) listed 116 publications devoted to the above problem. 52 works “solve” the 

P≠NP, 61 “solve” the P=NP, and 3 decides that the problem is unprovable. 4 out of 61 (P=NP) 

publications that are closely related to this research are: LaPlante (2015), Cardenas et al (2015),Wen-

Qi (2012), Zeilberger (2009). It is worth to mention several works published after 2016: Voinov 

(2017), Voinov et al (2018), Panyukov (2018), Voinov (2019), Voinov and Rahmanov (2020), Müller 

(2020), Voinov and Pya Arnqvist (2021), Voinov (2022). 

   The paper is organized as follows: in Section 2 the basic algorithm for solving 0-1 linear Diophantine 

equation is introduced. The properties of that algorithm are studied in Section 3. Sections 4 and 5 

provide a revision and refining of results concerning 2 and 3-partitions obtained in Voinov and 

Rahmanov (2020). Hamiltonian cycles in symmetric graphs are discussed in Section 6. Section 7 

introduces a new approach for solving symmetric traveling salesman problems. A discussion and 

conclusions are given in Section 8. Appendices provide numerical examples and the software used in 

this research.  
 

2. Mathematical background 

   Given arbitrary positive integers 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑛 ∈ ℕ, consider the problem of representing a 

positive integer 𝐵 as a sum of at most 𝑀 ≤ 𝑛 parts such that 

                                                         𝑠1𝑎1 + 𝑠2𝑎2 +⋯+ 𝑠𝑛𝑎𝑛 = 𝐵,                                              (2.1) 

where 𝑠1 +⋯+ 𝑠𝑛 ≤ 𝑀 and si are nonnegative integers. The sign [𝑥] denotes the greatest integer part 

of 𝑥. 
Theorem 1. The number of compositions (partitions taking order of summands into account) 

    𝑅𝐵(𝑀, 𝑛) = ∑ ∑ ⋯∑
𝑀!

(𝑀−𝑠1−⋯−𝑠𝑛)!𝑠1!⋯𝑠𝑛!

min{𝑀,[
𝐵−𝑠𝑛𝑎𝑛−⋯−𝑠3𝑎3

𝑎2
]}

𝑠2=0

min{𝑀,[
𝐵−𝑠𝑛𝑎𝑛
𝑎𝑛−1

]}

𝑠𝑛−1=0

min⁡{𝑀,[
𝐵

𝑎𝑛
]}

𝑠𝑛=0
          (2.2) 

if 𝑠1 +⋯+ 𝑠𝑛 ≤ 𝑀, 𝑠1 = (𝐵 − 𝑠𝑛𝑎𝑛 −⋯− 𝑠2𝑎2)/𝑎1 being a nonnegative integer, and is zero 

otherwise. The compositions themselves are written down as 

                                                          {𝑎1
𝑠1 , 𝑎2

𝑠2 , … , 𝑎𝑛
𝑠𝑛},                                                                  (2.3) 

where {𝑠2, … , 𝑠𝑛} are sets of summation indices in (2.2). The notation (2.3) means that in any 

composition there will be 𝑠1 summands of 𝑎1, 𝑠2 of them will be 𝑎2, and so on. Note that 𝑅𝐵(𝑀, 𝑛) 
in (2.2) is a refined expression (11.7) of Voinov and Nikulin (1997), p.156. 

Proof. The generating function for the number 𝑅𝐵(𝑀, 𝑛) of compositions (partitions taking order of 

summands into account) of 𝐵 such as in (2.1) is (Voinov and Nikulin (1995)) 

                 𝛹𝒂(𝑧) = (1 + 𝑧𝑎1 ⋯+ 𝑧𝑎𝑛−1 + 𝑧𝑎𝑛)𝑀 = ∑ 𝑅𝐵(𝑀, 𝑛)𝑧𝑙
𝑀 max

1≤𝑖≤𝑛
{𝑎𝑖}

𝑙=0 .                               (2.4) 

Writing  𝛹𝒂(𝑧) as [(1 + 𝑧𝑎1 ⋯+ 𝑧𝑎𝑛−1) + 𝑧𝑎𝑛]𝑀 and applying the binomial formula, we get 

                                     𝛹𝒂(𝑧) = ∑ (
𝑀
𝑘
) 𝑧𝑎𝑛𝑘𝑀

𝑘=0 (1 + 𝑧𝑎1 +⋯+ 𝑧𝑎𝑛−1)𝑀−𝑘= 
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= ∑(
𝑀
𝑘
)

𝑀

𝑘=0

𝑧𝑎𝑛𝑘 ∑ 𝑅𝑡(𝑀 − 𝑘, 𝑛 − 1)𝑧𝑡

(𝑀−𝑘) max
1≤𝑖≤𝑛−1

{𝑎𝑖}

𝑡=0

. 

Changing the order of summation one gets 

                  𝛹𝒂(𝑧) = ∑ {∑ (
𝑀
𝑠𝑛
) 𝑅𝐵−𝑠𝑛𝑎𝑛(𝑀 − 𝑠𝑛, 𝑛 − 1)

min{𝑀,[
𝐵

𝑎𝑛
]}

𝑠𝑛=0
} 𝑧𝑙 .

𝑀 max
1≤𝑖≤𝑛

{𝑎𝑖)

𝑙=0                          (2.5) 

From (2.4) and (2.5) we obtain the recurrence relation 

                                      𝑅𝐵(𝑀, 𝑛) = ∑ (
𝑀
𝑠𝑛
)𝑅𝐵−𝑠𝑛𝑎𝑛(𝑀 − 𝑠𝑛, 𝑛 − 1)

min{𝑀,[
𝐵

𝑎𝑛
]}

𝑠𝑛=0
.                          (2.6) 

This relation gives 

⁡𝑅𝐵(𝑀, 𝑛) = ∑ ∑ ⋯ ∑ (
𝑀
𝑠𝑛
) (
𝑀 − 𝑠𝑛
𝑠𝑛−1

)⋯

min{𝑀,[
𝐵−𝑠𝑛𝑎𝑛−⋯−𝑠3𝑎3

𝑎2
]}

𝑠2=0

min{𝑀,[
𝐵−𝑠𝑛𝑎𝑛
𝑎𝑛−1

]}

𝑠𝑛−1=0

min⁡{𝑀,[
𝐵
𝑎𝑛

]}

𝑠𝑛=0

 

⋯(
𝑀 − 𝑠𝑛 −⋯− 𝑠3

𝑠2
)𝑅𝐵−𝑠𝑛𝑎𝑛−⋯−𝑠2𝑎2(𝑀 − 𝑠𝑛 −⋯− 𝑠2, 1). 

It can be shown (Voinov and Nikulin (1997), p.155) that 𝑅𝐵−𝑠𝑛𝑎𝑛−⋯−𝑠2𝑎2(𝑀 − 𝑠𝑛 −⋯− 𝑠2, 1) =

(
𝑀 − 𝑠𝑛 −⋯− 𝑠2

𝑠1
)  if 𝑠1 = (𝐵 − 𝑠𝑛𝑎𝑛 −⋯− 𝑠2𝑎2)/𝑎1 is a nonnegative integer, and is zero 

otherwise. Since 

                            (
𝑀
𝑠𝑛
) (
𝑀 − 𝑠𝑛
𝑠𝑛−1

)⋯(
𝑀 − 𝑠𝑛 −⋯− 𝑠2

𝑠1
) =

𝑀!

(𝑀−𝑠𝑛−⋯−𝑠1)!𝑠1!⋯𝑠𝑛!
 ,                           (2.7) 

we finally obtain (2.2).  

   Since terms (2.7) count all compositions of 𝐵 for fixed sets {𝑠1, … , 𝑠𝑛}, the compositions themselves 

are enumerated as in (2.3). 

Corollary 1. Equating terms (2.7) in (2.2) to 1 we obtain the number of partitions for 𝐵 on at most 

𝑀 ≤ 𝑛⁡ parts as 

                      𝑅𝐵(𝑀, 𝑛) = ∑ ∑ ⋯∑ 1,
min{𝑀,[

𝐵−𝑠𝑛𝑎𝑛−⋯−𝑠3𝑎3
𝑎2

]}

𝑠2=0

min{𝑀,[
𝐵−𝑠𝑛𝑎𝑛
𝑎𝑛−1

]}

𝑠𝑛−1=0

min⁡{𝑀,[
𝐵

𝑎𝑛
]}

𝑠𝑛=0
                   (2.8) 

where 𝑠1 +⋯+ 𝑠𝑛 ≤ 𝑀 and ⁡𝑠1 = (𝐵 − 𝑠𝑛𝑎𝑛 −⋯− 𝑠2𝑎2)/𝑎1 being a nonnegative integer. As 

previously, the partitions (solutions of the equation (2.1)) are defined by (2.3). 

Corollary 2. Consider the subset sum problem. The solution of this problem for any sum 𝐵 ∈ ℤ+ 

means to find a vector (𝑠1, … , 𝑠𝑛)
𝑇 with 𝑠𝑖 ∈ {0,1}, such that  

                                                              𝑠1𝑎1 + 𝑠2𝑎2 +⋯+ 𝑠𝑛𝑎𝑛 = 𝐵.                                          (2.9) 

The number of the equation (2.9) solutions on at most 𝑀 ≤ 𝑛⁡parts equals 

                        𝑅𝐵(𝑀, 𝑛) = ∑ ∑ ⋯∑ 1
min⁡(1,[

𝐵−𝑠𝑛𝑎𝑛−⋯−𝑎3𝑠3
𝑎2

])

𝑠2=0

min⁡(1,[
𝐵−𝑠𝑛𝑎𝑛
𝑎𝑛−1

])

𝑠𝑛−1=0

min⁡(1,[
𝐵

𝑎𝑛
])

𝑠𝑛=0
                  (2.10) 
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for 𝑠1 +⋯+ 𝑠𝑛 ≤ 𝑀 and 𝑠1 = (𝐵 − 𝑠𝑛𝑎𝑛 −⋯− 𝑠2𝑎2)/𝑎1 being 0 or 1, and is zero otherwise. All 

solutions themselves, if exist, can be enumerated as {𝑎1
𝑠1 , … , 𝑎𝑛

𝑠𝑛}, where {𝑠2, … , 𝑠𝑛} are sets of 

summation indices in (2.10). If 𝑀 = 𝑛 then the algorithm in (2.10) will enumerate all solutions of the 

equation (2.9).  

   Being based on a generating function for partitioning natural numbers on parts with positive integer 

components the algorithm in (2.10) will be called as GFA. 

 

3. A note on solutions of a 0-1 linear Diophantine equation 

   Consider first the following simplest intuitive combinatorial algorithm (ICA) for enumerating all 0-

1 solutions of the equation in (2.9). To do this we have to get all 2𝑛 combinations of a vector 

(𝑎1, … , 𝑎𝑛)
𝑇, and select those of them that satisfy the equation (2.9). This can be done, e.g., by using 

the lexicographic or equivalent to it the revolving door algorithm of Nijenhuis and Wilf (1978) 

realized in the R-package “combinat”.  

   As an alternative one may use the GFA for 𝑀 = 𝑛. This algorithm uses the R-function 

“get.subsetsum” from the R-package “nilde”. If in (2.10) there were 𝑛 − 1 sums from 0 to 1, then the 

expected time complexity of that algorithm would be 𝑂(2𝑛−1). But, actually, some upper limits of 

sums (dependent on 𝑎1, 𝑎2, … , 𝑎𝑛) can be zero, and the total number of those simple operations will 

be less than 2𝑛−1. If instances under consideration are random, then it will be not easy to assess that 

number. In view of this the R-command “microbenchmark” was used to define the computing time of 

algorithms used. This software computes the CPU time with the accuracy of one nanosecond.      

   To assess the complexity of both approaches numerically consider the following computer 

experiment. For all 15 pairs [𝑛, 𝐵] with 𝑛 ∈ [6,9, … ,48] and 𝐵 ∈ [45,60, … ,255] ([6,45], [9,60],…, 

[48,255]) random samples were generated using the R-command “sample(1:B,n,replace=FALSE)”. 

To generate a sample of size 𝑛 this command uses different positive integers uniformly distributed in 

the range [1, 𝐵]. An application of “microbenchmark” permits to estimate the computing time for 

solutions constructed by the ICA and the GFA with a small ⁡relative standard deviation of the mean 

δ. For 4,000 samples generated by a standard PC (Intel® Core(™) i7-2600 CPU@3.40 GHz, RAM 

24.00GB) the algorithms give δ < 2.5%.   Results of the simulation are given in Table 1. Note that 

the lack of RAM did not permit to use ICA for 𝑛 > 30.                                                        

Table 1. Mt1 - mean time in seconds needed to enumerate all solutions of the equation in (2.9) using 

the GFA.  Mt2 – same for the ICA. 

n p=n+B+nB Mt1 Mt2  n p=n+B+nB Mt1 Mt2 

6 321 0.00080454 0.00074977  30 5145 0.1009730 1490.8397 

9 609 0.00160270 0.00165080  33 6153 0.1646100 - 

12 987 0.00316990 0.00649209  36 7251 0.2675440 - 

15 1455 0.00601060 0.04359170  39 8439 0.4154940 - 

18 2013 0.01121000 0.34672344  42 9717 0.6412170 - 

21 2661 0.02065830 2.82593890  45 11085 0.9521615 - 

24 3399 0.03622090 22.7577757  48 12543 1.4013820 - 

27 4227 0.06013500 182.794950      

 

    For every 𝑛 ∈ [6,9, … ,48] and 𝐵 ∈ [45,60,… ,255] the ICA and the GFA produce the same 

solutions for all generated instances. These results confirm the correctness of the algorithm GFA. An 
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interested reader may reproduce the above results using his/her own seed and the R-script “GFA and 

combn”. This script can be requested for free by the email voinovv@mail.ru.  

   From Table 1 one sees that the GFA is much faster than the ICA. For illustration consider, e.g., the 

randomly generated vector   

⁡𝐴 =(94,73,128,17,24,133,63,64,86,72,151,36,104,83,135,99,51,58,75,59,127,77,115,142,85,82,25,

9,89,162)𝑇 of size 𝑛 = 30. For 𝐵 = 165 both algorithms produce the same 24 solutions: {83,82}, 

{73,17,75}, {73,83,9}, {17,63,85}, {17,59,89}, {24,64,77}, {24,83,58}, {24,59,82}, {63,77,25}, 

{36,104,25}, {51,25,89}, {58,82,25}, {73,17,24,51}, {73,24,59,9}, {73,58,25,9}, {17,24,99,25}, 

{17,24,115,9}, {17,64,75,9}, {17,64,59,25}, {17,72,51,25}, {72,59,25,9}, {17,24,63,36,25}, 

{17,24,64,51,9}, and {17,63,51,25,9}. The computing time for the ICA is 1,495.22 sec., and 0.03285 

sec. for the GFA.  

   Garey and Johnson (1978), p. 500 noted that “… for most formal complexity theory, the time 

complexity of an algorithm is expressed in terms of a single “instance size” parameter which reflects 

the number of symbols that would be required to describe the instance in a “reasonable” and “concise” 

manner”. An instance in (2.9) is well described by the parameter 𝑝 = 𝑛 + 𝐵 + 𝑛𝐵. Note that 𝑛𝐵 is 

related to the upper bound for the number of symbols required to describe the left-hand side part of 

the equation (2.9). 

   The simulated mean times’ curves fitted by Microsoft Excel 2018 for Mt1 and Mt2 are presented on 

Figures 1 and 2 respectively.  

 

       
                                  Fig. 1                                                                      Fig. 2 

 

   From Fig. 1 we see that the degree 3 polynomial y1 = 8E-13p3 - 2E-09p2+ 1E-05p - 0.0042 (solid 

line with multiple R2 = 1) provides an excellent fit for the CPU time dependence on p. It evidently                           

declines the exponential fit y2 = 0.0026e0.0006p (dashed line with R2 = 0.9217). Two other criteria 

(Residual Standard Error (RSE) and Akaike’s Information Criterion (AIC)) confirm this conclusion. 

RSE and AIC for y1 equal 0.002164 (on 11 degrees of freedom (d.f.)) and -136.1568 respectively, 

but for y2 they are 0.008934 and -95.1157 correspondingly. From the above follows 𝑂(𝑝3) 
polynomial time solvability of a 0-1 linear Diophantine equation (2.9). Thus, Zero-One Integer 

Programming is not only NP-complete as it was stated by Garey and Johnson (1979), p. 245, but 

belongs to class P as well.  

   Fig. 2 represents results of fitting CPU times obtained by ICA. One sees that formally the polynomial 

fit y1 = 2E-18p6 - 2E-14p5 + 1E-10p4  - 2E-07p3 + 0.0002p2 - 0.1191p + 20.368 with R2 = 1, RSE =

1.907, AIC = 39.62 is better than the exponential one y2⁡ = ⁡0.0004e0.0031p with R2 =

y1 = 8E-13p3 - 2E-09p2

+ 1E-05p - 0.0042, R² = 1

y2 = 0.0026e0.0006p

R² = 0.9217
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0.991, RSE = 1.945, AIC = 41.25. Since there is no essential difference in criteria values, the above 

conclusion is not reliable. It can be explained, e.g., by the fact that Fig. 2 is based on only 9 

experimental values versus 15 for Fig. 1.   

Remark 3.1. The results of this simulation experiment can be summarized as follows: 

a) Both the GFA and the ICA produce all absolutely the same 0-1 solutions of the equation (2.9). This 

important result confirms the correctness of the GFA.  

b) The complexity of the GFA is estimated as O(𝑝3), where instances’ “size” 𝑝 = 𝑛 + 𝐵 + 𝑛𝐵. The 

GFA is much faster as compared to ICA. If, e.g., 𝑛 = 30 and 𝐵 = 165, then the computing time for 

the GFA is about 15,000 times less than that for the ICA. 

c) The 0-1 Integer Linear Programming (ILP) problem belongs to class P. 

d) Since there is a polynomial time reduction from the 3-Satisfiability (3SAT) to ILP problem (see 

Karp (1972), p.97 and Garey and Johnson (1979), p.245), then, due to Lemma 2.1 of ibid, pp.34-35, 

the 3SAT problem  belongs to the class P (see also Remark 6.3). A constructive algorithm of Müller 

(2020) confirms this conclusion.  

 

 

4. 2-Partition revisited  
 

   Voinov and Rahmanov (2020) introduced and considered the following formulation of the 2-

Partition problem: 

Instance: A finite set A of 2m elements, a bound 𝐵 ∈ ℤ+, and a “size” 𝑠(𝑎) ∈ ℤ+ for each 𝑎 ∈ 𝐴 such 

that each 𝑠(𝑎) satisfies  B/3< 𝑠(𝑎) < 𝐵, and such that ∑ 𝑠(𝑎) = 𝑚𝐵𝑎∈𝐴 .  

Question: Can A be partitioned into m disjoint sets 𝑆1, 𝑆2, … , 𝑆𝑚 such that for 1 ≤ 𝑖 ≤ 𝑚 

⁡∑ 𝑠(𝑎) = 𝐵𝑎∈𝑆𝑖
. (The above constraints on the item sizes imply that every such 𝑆𝑖 will contain exactly 

two elements from A). 

    This formulation is analogous to that of 3 and 4-Partition problems formulated by Garey and 

Johnson (1979, pp. 96-97. In Voinov and Rahmanov (2020) the authors considered the restricted 2-

Partition problem. Using the R-function “nlde” from the R-package “nilde” they have provided an 

experimental proof of the fact that if B is fixed, then the time complexity is estimated as 𝑂(𝑛6). Thus, 

actually, their algorithm was pseudo-polynomial. It has to be noted that the R-function “nlde” is less 

effective than the function “get.subsetsum” used in section 3. Because of this it is desirable to revisit 

an assessment of the time complexity of algorithms for solving the 2-Partition problem. To do this 

consider the following experiment based on the GFA that uses the function “get.subsetsum”, and ICA 

that uses the function “combn”. Since both algorithms use solutions of equations (2.9), then, as in 

section 3, in the following experiments the parameter 𝑝 = 𝑛 + 𝐵 + 𝑛𝐵 will be used.  

Exp.1. For every 9 pairs [𝑛, 𝐵] with 𝑛 ∈ [4,6, … ,20] and 𝐵 ∈ [40,50,… ,120] 4,000 samples were 

generated at random using the R-command “sample(R1:R2,2m,replace=FALSE)”, where 𝑅1 =
[𝐵/3] + 1 and 𝑅2 = 𝐵 − 1. This command uses different positive integers from the range [𝑅1, 𝑅2] 

to generate a random sample of size 𝑛 = 2𝑚,𝑚 = 2,3, … ,10. Times needed to enumerate solutions 

of the equation (2.9) on exactly 2 parts were estimated by R-command “microbenchmark()” that 

estimates the computing time for solutions containing exactly 2 parts constructed by the GFA and that 

by the ICA with a small ⁡relative standard deviation of the mean δ. For 4,000 samples  δ was less than 

2.3%.  Results of the simulations are provided in Table 2 and Figures 3 and 4 below. 

Table 2. Mt3 – mean time in seconds needed to enumerate all solutions of the equation in (2.9) 

using the GFA.  Mt4 – same for the ICA. 
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n B p=n+B+nB Mt3 Mt4 

4 40 204 0.00052816 0.00011587 

6 50 356 0.00079348 0.00012211 

8 60 548 0.00126969 0.00013219 

10 70 780 0.00192497 0.00014253 

12 80 1052 0.00288650 0.00015709 

14 90 1364 0.00420054 0.00017263 

16 100 1716 0.00601045 0.00019322 

18 110 2108 0.00818904 0.00021668 

20 120 2540 0.01083942 0.00024617 

 

 

 

  
                                  Fig. 3                                                                      Fig. 4 

 

     From these figures we see that the multiple R2 of polynomial fits (solid lines) is one or almost one 

for both approaches. At the same time for the exponential fits (dashed lines) the values of R2 are 

essentially less than one. Thus we have to conclude that both GFA and ICA are polynomial in time. 

Criteria RSE and AIC for Mt3 confirm this. RSE and AIC for y1 = -2E-13p3 + 2E-09p2 + 8E-07p + 
0.0003 equal 2.3 ∙ 10−5 (on 5 d.f.) and -161.8932 respectively, but for 𝑦2 = 0.0006𝑒0.0013𝑝 they 
are 0.0006232 and -103.5734 correspondingly. The same situation is for Mt4. RSE and AIC for 

𝑦1 = 5𝐸 − 12𝑝2 + 4𝐸 − 08𝑝 + 0.0001 equal 6.221 ∙ 10−7 and -227.3311 respectively, but for 

𝑦2 = 0.0001𝑒0.0003𝑝 they are 1.964 ∙ 10−6 (on 6 d.f.) and -207.2489 correspondingly. These results 

provide the conclusion that 2-Partition problem is solvable in polynomial time with the time 

complexity of 𝑂(𝑝≤3).  
Remark 4.1. Since the above solution of the 2-Partition problem is based on consisting of exactly two 

parts solutions of a 0-1 linear Diophantine equation considered in Section 3, both the GFA and the 

ICA realized in the R-script “two_parts” of Appendix 1 produce the same partitions. If, for example, 

𝑚 = 3, 𝐵 = 50, 𝑛 = 6, then the script gives 125 answers “yes” out of 4,000 random instances. Two 

of them are given below for illustration.  

[1] 18 20 21 29 30 32                        [1] 17 19 22 28 31 33           # random samples (A) 

[1] 150                                               [1] 150                                  # ∑ 𝑠(𝑎)𝑎∈𝐴 = 𝑚𝐵 

   sol.1 sol.2 sol.3                                    sol.1 sol.2 sol.3               # solutions by GFA 

s1     0     0     1                                    s1     0     0     1  

y1 = -2E-13p3 + 2E-09p2 +
8E-07p + 0.0003,R² = 1

y2 = 0.0006e0.0013p

R² = 0.9502
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s2     0     1     0                                    s2     0     1     0 

s3     1     0     0                                    s3     1     0     0  

s4     1     0     0                                    s4     1     0     0 

s5     0     1     0                                    s5     0     1     0 

s6     0     0     1                                    s6     0     0     1 

        [,1] [,2] [,3]                                        [,1] [,2] [,3]                  # solutions by ICA 

[1,]   18   20   21                                [1,]   17   19   22   

[2,]   32   30   29                                [2,]   33   31   28 

 

Remark 4.2. The 2-Partition problem is a particular case of the classical Partition problem defined by 

Garey and Johnson (1979), p.223 as follows: 

Instance: Finite set A and a size 𝑠(𝑎) ∈ ℤ+ for every 𝑎 ∈ 𝐴. 

Question: Is there a subset 𝐴′ ⊆ 𝐴 such that ∑ 𝑠(𝑎) = ∑ 𝑠(𝑎)𝑎∈𝐴−𝐴′𝑎∈𝐴′ ? 

    Under such definition of Partition parts 𝐴′ and 𝐴 − 𝐴′ may have both the same number of elements 

in each part (e.g., two for 2-Partition above) or different number of them. Consider the situation typical 

to the numerical example of (ibid, p.91). They considered the following artificial “instance of Partition 

for which 𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5}, 𝑠(𝑎1) = 1, 𝑠(𝑎2) = 9,⁡ 𝑠(𝑎3) = 5, 𝑠(𝑎4) = 3, and 𝑠(𝑎5) = 8". 
Note that ∑ 𝑠(𝑎) = 𝐵 = 26.𝑎∈𝐴  Using the intuitive “dynamic programming” simple procedure with 

the complexity 𝑂(𝑛𝐵) they have shown that the partition with 𝐴′ = {1,9,3} and 𝐴 − 𝐴′ = {5,8} 
satisfies the condition  ∑ 𝑠(𝑎) = ∑ 𝑠(𝑎)𝑎∈𝐴−𝐴′𝑎∈𝐴′ = 13 , thus, answering “yes” on the Question. 

”Since “nB” is not bounded by any polynomial function of this quantity”, Garey and Johnson 

concluded that Partition belongs to class NP. This wrong conclusion is disproved by the following 

experiment based on ICA. 

Let, as above, ∑ 𝑠(𝑎) = 𝐵 = 26𝑎∈𝐴  with 𝑠(𝑎) ∈ {1,2, … ,10}.⁡Constructing, e.g., 50 random samples 

A of size 5 and using the R-script “two_parts” one will get 39 partitions that answer “yes”. Two of 

them are given below for illustration. 

 

[1] 1 3 6 7 9              [1] 3 4 5 6 8                 # random samples (A) 

[1] 26                        [1] 26                           # ∑ 𝑠(𝑎)𝑎∈𝐴 = 𝐵  

   sol.1 sol.2                   sol.1 sol.2                # solutions by GFA 

s1     0     1                s1     1     0 

s2     0     1                s2     1     0 

s3     1     0                s3     0     1 

s4     1     0                s4     1     0 

s5     0     1                s5     0     1 

       [,1] [,2]                     [,1] [,2]                  # solutions by ICA 

[1,]    6    1                [1,]    5   3 

[2,]    7    3                [2,]    8   4 

[3,]          9                [3,]         6 

 

   Note that the artificial partition ({1,9,3},{5,8}) of Garey and Johnson also presents in that set of 39 

random instances. Since the complexity of ICA is given by the degree two polynomial of 𝑛𝐵, one 

concludes that the Partition problem is in class P. This fundamental result is very important for both 

the theory and applications to practical problems because the complexity of many applied problems 

is explained by the polynomial-time transformation from Partition. This means that if such a 

transformation exists, then (even if that problem is currently considered to be NP-hard) a polynomial-

time algorithm solving the problem can be developed.  Based on “an extensive list of known NP-

complete and NP-hard problems” of  (ibid, Ch. 7) a short list of problems polynomially reducible from 
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Partition  is given below (references to corresponding pages of Chapter 7 are presented in 

parentheses): a) Subset sum (p. 223), b) Bin packing (p. 226), c) Sequencing to minimize tardy task 

weight (p. 236), d) Sequencing with deadlines and set-up times (p. 238), e) Open-shop scheduling (p. 

241), f) Production planning (p. 243), g) Quadratic programming (p. 245), h) Knapsack (p. 247).  

 

Remark 4.3. The paper of Zeilberger (2009) confirms the above conclusion for the Subset sum 

problem. The author developed an original computer-generated proof based on polynomial time 

algorithm. He solved “more than 10,000 linear programming problems, each with more than 100,000 

variables” and obtained the answer “yes” on the problem’s Question. From this the author deduced 

that P=NP.   

 

 

5. 3-Partition revisited  

     The 3-Partition problem is defined as follows (Garey and Johnson (1979), p.96): 

Instance: A finite set 𝐴 = {𝑎1, 𝑎2, … , 𝑎3𝑚} of 3m elements, a bound 𝐵 ∈ ℤ+, and a “size” 𝑠(𝑎) ∈ ℤ+ 

for each 𝑎 ∈ 𝐴 such that each 𝑠(𝑎) satisfies 𝐵/4 < 𝑠(𝑎) < 𝐵/2, and such that ∑ 𝑠(𝑎) = 𝑚𝐵𝑎∈𝐴 .  

Question: Can 𝐴 be partitioned into m disjoint sets 𝑆1, 𝑆2, … , 𝑆𝑚 such that for 1 ≤ 𝑖 ≤
𝑚,∑ 𝑠(𝑎) = 𝐵𝑎∈𝑆𝑖

. (Notice that the above constraints on the item sizes imply that every such 𝑆𝑖 must 

contain exactly three elements from A). 

      Voinov and Rahmanov (2020) showed that the answer on this Question is “yes”, on the contrary 

of the commonly accepted  “no”. Using the algorithm that is similar to but less effective than GFA 

they have simulated numerous counterexamples.  

     Exp.2. For two pairs of [𝑚, 𝐵] with 𝑚 = 2,3 and 𝐵 = 90 samples 𝐴 = {𝑎1, 𝑎2, … , 𝑎3𝑚} were 

randomly generated using the R-command “sample(R1:R2,3m,replace=TRUE)”, where 𝑅1 =
[𝐵/4] + 1 = 23, 𝑅2 = [𝐵/2] − 1 = 44, and ∑ 𝑎𝑖 = 𝑚𝐵,𝑚 = 2,3, …3𝑚

𝑖=1  This command generates  

random samples of size 3m using positive integers from the range [𝑅1, 𝑅2] . Note that some numerical 

values of 𝑎𝑖 may be used several times, and that all conditions of an Instance are satisfied.  

   For any instance the solutions of the equation (2.9) for 𝑀 = 3 were obtained using the GFA and the 

ICA. 

    The simulation results are as follows: 

1) As in Sections 3 and 4 both approaches produce the same 0-1 solutions for all generated samples, 

2) If 𝑚 = 3, then 4,327 random instances out of 46,573 ones answer “yes”, 

3) If 𝑚 = 4, then 49 random instances out of 5,601 ones answer “yes”. 

   A particular generated at random numerical example that illustrates the above results is: 

Let 𝑚 = 3 , 𝐵 = 90 and 𝐴 = {37,23,24,31,29,27,32,25,42}. The following 3 disjoint subsets 

answering “yes” on the Question are: {37,24,29}, {23,25,42}, {31,27,32}.  

    Due to the definition in (ibid, p. 18) “a decision problem Π consists of a set 𝐷𝛱 of instances and a 

subset 𝑌𝛱 ∈ 𝐷𝛱 of yes-instances” the results of the Exp.2 solve the 3-Partition decision problem. 

    To assess the complexity of algorithms used consider the next experiment. 

Exp.3. For all 16 pairs of [𝑛, 𝐵] with 𝑛 ∈ [6,9, … ,48] and 𝐵 ∈ [45,60,… ,255] 1,000 samples were 

generated using the R-command “sample(R1:R2,3m,replace=FALSE)”. This command uses different 

positive integers from the range [𝑅1, 𝑅2] to generate a random sample of size 𝑛 = 3𝑚,𝑚 =

2,3, … ,16. Times needed to enumerate solutions of the equation (2.9) on exactly 3 parts were 

estimated by R-command “microbenchmark()”. An application of this software permits to estimate 

the computing time for solutions containing exactly 3 parts constructed by the GFA and by the ICA  
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with a rather small ⁡relative standard deviation of the mean 𝛿. For 1,000 samples  𝛿 was less than 

0.8%.  Numerical results of the simulations are provided in Table 3 and Figures 5 and 6 below. 

Table 3. Mt5 - mean time in seconds needed to enumerate solutions on exactly 3 parts of the equation 

in (2.9) using the GFA.  Mt6 - same for the ICA.  

n B p=n+B+nB Mt5 Mt6 

6 45 321 0.00107457 0.000140646 

9 60 609 0.00271464 0.000194590 

12 75 987 0.00617127 0.000290530 

15 90 1455 0.01199900 0.000472490 

18 105 2013 0.02104006 0.000726200 

21 120 2661 0.03401750 0.001075750 

24 135 3399 0.05630800 0.001565000 

27 150 4227 0.08096600 0.002179000 

30 165 5145 0.11610500 0.002971000 

33 180 6153 0.15631400 0.003895600 

36 195 7251 0.21235000 0.005031600 

39 210 8439 0.28815000 0.006352000 

42 225 9717 0.37803400 0.007659000 

45 240 11085 0.49332000 0.009298000 

48 255 12543 0.62674580 0.011124000 

 

  

                               Fig. 5                                                                    Fig. 6 

     From these figures we see that the multiple 𝑅2 of polynomial fits (solid lines) is almost one for 

both approaches. At the same time for the exponential fits (dashed lines) the values of 𝑅2are 

essentially less than one. Thus we have to conclude that both GFA and ICA are polynomial in time. 

Criteria RSE and AIC for Mt5 confirm this. RSE and AIC for y1 = 4E-09p2 + 2E-06p + 0.0012 equal 
0.00245 (on 12 d.f.) and -133.1254 respectively, but for 𝑦2 = 0.0054𝑒0.0005𝑝 they are 0.03183 
and -57.00329 correspondingly. The same situation is for Mt6. RSE and AIC for 
𝑦1 = −3𝐸 − 15𝑝3 + 9𝐸 − 11𝑝2 + 2𝐸 − 07𝑝 + 4𝐸 − 05 equal 4.35 ∙ 10−5 (on 11 d.f.) and -

253.3688 respectively, but for 𝑦2 = 0.0003𝑒0.0003𝑝 they are 7.836 ∙ 10−4 and -168.1272 

correspondingly. These results provide the conclusion that 3-Partition problem is solvable in 

polynomial time with the time complexity of 𝑂(𝑝≤3).  
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 Remark 5.1. Like in case of the Partition this result is very important for both the theory and 

applications because the complexity of many applied problems is explained by the polynomial-time 

transformation from the 3-Partition. This means that if such a transformation exists, then (even if that 

problem is currently considered to be NP-hard) a polynomial-time algorithm solving those problems 

can be developed.  

    A list of problems polynomially reducible from the 3-Partition (references to corresponding pages 

of (ibid, Chapter 7) are presented in parentheses) is: 

a) Bandwidth (p. 200), b) Weighted diameter (p. 205), c) Intersection graph for segments on a grid (p. 

219), d) Edge embedding on a grid (p. 219), e) Minimum sum of squares (p. 225), f) Bin packing (p. 

226), g) Dynamic storage allocation (p. 226), h) Expected retrieval cost (p. 227), i) Sequencing with 

release times and deadlines (p. 236), j) Sequencing to minimize weighted tardiness (p. 237), k) 

Resource constrained scheduling (p. 239), l) Open-shop scheduling (p. 241), m) Job-shop scheduling 

(p. 242).  

 

Remark 5.2. The numerical 3-dimensional matching (N3DM) decision problem is formulated as 

follows (ibid, p. 224): 

Instance: Disjoint sets 𝑊,𝑋, and⁡𝑌, each containing m elements, a size 𝑠(𝑎) ∈ ℤ+ for each element 

𝑎 ∈ 𝑊 ∪ 𝑋 ∪ 𝑌, and a bound 𝐵 ∈ ℤ+. 

Question: Can 𝑊 ∪ 𝑋 ∪ 𝑌 be partitioned into m disjoint sets 𝐴1, 𝐴2, … , 𝐴𝑚 such that each 𝐴𝑖 contains 

exactly one element from each of 𝑊,𝑋, and⁡𝑌 and such that, for 1 ≤ 𝑖 ≤ 𝑚, ∑ 𝑠(𝑎) = 𝐵𝑎∈𝐴𝑖
?  

   It is easily seen that this problem is a particular case of 3-Partition problem. The following numerical 

example clearly explains the situation. Let one apply the approach of Exp.2 to the randomly generated 

instance: 𝑚 = 3 , 𝐵 = 90 and 𝐴 = {25,26,23,36,40,34,33,29,24}. Using 𝐴 = 𝑊 ∪ 𝑋 ∪ 𝑌, where 

𝑊 = {25,26,23}, 𝑋 = {36,40,34}⁡and⁡𝑌 = {33,29,24} and solving the 3-Partition problem one gets 

the following three disjoint sets: 𝐴1 = {25,36,29} , 𝐴2 = {26,40,24} and 𝐴3 = {23,34,33} each sum 

to 90. Every 𝐴𝑖⁡contains exactly one element from 𝑊,𝑋, and⁡𝑌 thus giving a solution for the decision 

problem. An experiment similar to Exp.2 produces as many   instances answering “yes” as one needs. 

The polynomial time solvability of the N3DM problem follows from that for the 3-Partition problem. 

   The results of this section can be summarized as follows: 

1) The GFA   and the ICA produce absolutely the same 0-1 solutions of the equation (2.9) on exactly 

3 parts. 

2) The decision 3-Partition problem has been solved. The simulations produce numerous 

counterexamples showing that the answer on the problem’s Question is “yes”. 

3) The ICA is the most efficient. If, e.g., n = 48, then computing time by ICA is 56.3 times less than 

that by the GFA.  

4) The 3-Partition problem’s complexity is 𝑂(𝑝≤3). This means that it is solvable in polynomial time 

by deterministic algorithms, and, hence, belongs to class P. 

5) The numerical 3-dimentional matching problem belongs to class P.   

 

Remark 5.3. The 3-dimensional matching (3DM) problem is formulated as (ibid, p.221): 

Instance: Set 𝑀 ⊆ 𝑊 × 𝑋 × 𝑌, where 𝑊,𝑋, and 𝑌 are disjoint sets having the same number q of 

elements. 

Question: Does M contain a matching, i.e., a subset 𝑀′ ⊆ 𝑀 such that |𝑀′| = 𝑞 and no two elements 

of 𝑀′ agree in any coordinate? 

   It is known (ibid, p. 99) that there is a polynomial time transformation from 3DM to N3DM. Since 

N3DM is solvable in polynomial time, and, hence belongs to class P, from Cook (1971), p. 156 it 

follows that 3DM also belongs to class P. Since there is a polynomial time reduction from the N3DM 

to 3-Partition (ibid p. 90), it again follows that 3DM is in P.  
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6. Symmetric Hamiltonian graphs 

    The graph 𝐺 = (𝑉, 𝐸) is called Hamiltonian if it has at least one Hamiltonian cycle or circuit. The 

Hamiltonian cycle (HC) problem is formulated as (Garey and Johnson (1979)): 

Instance: A graph 𝐺 = (𝑉, 𝐸). 
Question: Does 𝐺 contain a Hamiltonian circuit, that is, an ordering < 𝑣1, 𝑣2, … , 𝑣𝑛 > of vertices of  

𝐺, where 𝑛 = |𝑉|, such that {𝑣𝑛, 𝑣1} ∈ 𝐸 and {𝑣𝑖, 𝑣𝑖+1} ∈ 𝐸 for all 𝑖, 1 ≤ 𝑖 < 𝑛 ? 

   Without loss of generality a graph can be described by a diagonal distance/cost 𝑛 × 𝑛⁡matrix 𝐶 =
(𝑐𝑢𝑣), where 𝑛(𝑛 − 1) edges 𝑢, 𝑣 ∈ 𝐸 are nonnegative integers. Laporte (1972), p. 237 noted that 

“symmetrical problems are better handled by specialized algorithms that exploit their structure”. In 

view of this the following variant of GFA for solving a symmetric HC problem is proposed: 

Alg.1. 

Step 1. (Initialization) Apply a heuristic algorithm (e.g., “cheapest_insertion”) for the matrix 𝐶 to get 

an upper bound 𝑈𝑏 for the Hamilton cycle length. 

Step 2. Construct all solutions on exactly 𝑛 parts for the equation (2.9) with 𝐵 = 𝑈𝑏 and 𝑛(𝑛 − 1)/2 

coefficients that are entries of, say, lower triangular part of 𝐶.   

Step 3. Select solutions that satisfy conditions of the problem: all vertices should be of degree two, 

there should be no subtours, and {𝑣𝑛, 𝑣1} must be in 𝐸.  

   A heuristic “cheapest_insertion” algorithm provides a solution of the HC decision problem, but it 

does not provide the uniqueness and polynomial time solvability of that solution. To investigate 

properties of the Alg.1 for solving a symmetric HC problem consider the following experiment: 

Exp.4. For all 9 pairs of [𝑛, 𝐵] with 𝑛 ∈ [3,4, … ,11] and 𝐵 ∈ [20,30,… ,100] 4,000 random instances 

were generated using the R-command “sample(1:B,n*n,replace=TRUE)”. Times needed to perform 

the above algorithm was estimated by the R-command “microbenchmark()”. 

   Numerical results of the simulations are provided in Table 4 and Figure 7 below. Note that “instance 

sizes” were described by the parameter 𝑝 = 𝑛 +
𝐵(𝑛2−𝑛)

2
+ 𝑛𝐵 = 𝑛 + 𝐵𝑛(𝑛 + 1)/2, which is an 

upper bound for the actual “instance size”.  

Table 4. Mtham - mean time in seconds needed to enumerate solutions for given n and B using the 

Alg.1. 

n B p=n+Bn(n+1)/2 Mtham 

3 20 123 0.00252540 

4 30 304 0.00341131 

5 40 605 0.00980120 

6 50 1056 0.07678800 

7 60 1687 1.08727400 

8 70 2528 13.4450900 

9 80 3609 159.064400 

10 90 4960 2146.79800 

11 100 6611 18683.9830 
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Fig. 7 

     From this figure we see that the multiple 𝑅2 of the polynomial fit 𝑦1 (solid line) is one. At the 

same time for the exponential fit (dashed line) the value of 𝑅2is significantly less than one. Thus, one 

may to conclude that the Alg.1 solves the HC problem in polynomial time with the complexity 𝑂(𝑝5). 
Criteria RSE and AIC for Mtham confirm this. RSE and AIC for 𝑦1 = 8𝐸 − 15𝑝5 − 7𝐸 − 11𝑝4 +
2𝐸 − 07𝑝3 − 0.0003𝑝2 + 0.1841𝑝 − 24.386  equal 10.72 (on 3 d.f.) and 72.346 respectively, but 
for 𝑦2 = 0.0045𝑒0.0026𝑝 they are 79.82 (on 7 d.f.) and 108.115 correspondingly. 
 

Remark 6.1. All  4,000 random instances of Exp.4 possess at least one Hamiltonian cycle. Many of 

them have several citcuits of the same length. The random symmetric graph with 9 vertices described 

by the cost/distance matrix 𝑑 in Figure 8 illustrates the situation.  
[,1] [,2]  [,3] [,4] [,5]  [,6] [,7]  [,8] [,9] 

[1,]    ■   50   38   55   45   42   35   60   52 
[2,]   50    ■   33   21   12   28   22   40   59 
[3,]   38   33   ■    41   52   47   15   40   41 
[4,]   55   21   41    ■   16   55   54   29   27 
[5,]   45   12   52   16    ■   61   11   16   72 
[6,]   42   28   47   55   61   ■    32   32   28 
[7,]   35   22   15   54   11   32   ■    27   68 
[8,]   60   40   40   29   16   32   27   ■    47 
[9,]   52   59   41   27   72   28   68   47   ■ 

                                                                                     Fig. 8 

The Alg.1 produces 4 different Hamiltonian cycles of length 238: [1] 3 1 6 9 4 2 8 5 7 3, [2] 2 1 3 7 5 

8 6 9 4 2, [3] 3 1 9 6 2 4 8 5 7 3, and [4] 3 1 9 6 8 4 2 5 7 3. Note that the upper bound for Alg.1 given 

by the R-command “solve_TSP(d,method=”cheapest_insertion”)” is 238 with a tour 5 8 4 2 6 9 1 3 7 

5. This Hamiltonian cycle is identical to the circuit No. 3 given by the Alg.1. From this it follows that 

a heuristic ”cheapest_insertion” algorithm does not enumerate all existing Hamiltonian cycles. By the 

way, it does not produce also the optimal tour for this particular symmetric TSP, which, as one will 

see in the next section, is 3 1 6 9 4 2 5 8 7 3 of length 226. 

    The Exp.4 showed that all 4,000 generated at random instances possess at least one Hamiltonian 

cycle. The same is true for disconnected graphs. These results can be considered as an experimental 

proof of the following  

Conjecture: Every planar symmetric graph possesses at least one Hamiltonian cycle. 

   The same result for asymmetric TSP was observed but not mentioned in Voinov and Pya Arnqvist 

(2021). 
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Remark 6.2. Duan Wen-Qi (2012) presented an alternative “constructive algorithm to solve the 

undirected Hamiltonian cycle problem in polynomial time”. 

Remark 6.3. The vertex cover (VC) and the Clique problem are defind by Garey and Johnson (1979), 

pp.46-47 as follows: 

Instance: A graph 𝐺 = (𝑉, 𝐸)⁡and a positive integer 𝐾 ≤ |𝑉|. 
Question: Is there a vertex cover of size 𝐾 or less for 𝐺, that is, a subset 𝑉′ ⊆ 𝑉 such that |𝑉′| ≤ 𝐾 

and, for each edge {𝑢, 𝑣} ∈ 𝐸, at least one of 𝑢 and 𝑣 belongs to 𝑉′? 

Instance: A graph 𝐺 = (𝑉, 𝐸)⁡and a positive integer 𝐽 ≤ |𝑉|. 
Question: Does 𝐺 contain a clique of size 𝐽 or more, that is, a subset 𝑉′ ⊆ 𝑉 such that |𝑉′| ≥ 𝐽 and 

every two vertices in 𝑉′are joined by an edge in 𝐸? 

   Evidently that every Hamiltonian cycle is both a vertex cover of size 𝐾 = |𝑉′| and a clique of size 

𝐽 = |𝑉′|. Since Alg.1 can be easily adapted for constructing VCs of size 𝑘 ≤ 𝐾 and Cliques of size 

≤ 𝐽 , then it follows that the Alg.1 solves the VC and the Clique problem in polynomial time. Hence, 

both VC and the Clique problems belong to the class P.  

   Since there is a polynomial time transformation from 3-satisfiability (3SAT) problem to the VC (see 

ibid, p.190), then due to theorem 4 of Cook (1971), p. 156 we immediately conclude the 3SAT 

problem is also solvable in polynomial time. This result is confirmed by Matthias Müeller (2020) who 

has developed an exact polynomial time 𝑂(𝑛15) algorithm that solves the 3SAT problem. 
  

7. Symmetric traveling salesman problem 

   The traveling salesman problem (TSP) is usually formulated as: given a graph 𝐺 = (𝑉, 𝐴) with 𝑛 =
|𝑉| vertices and 𝑛(𝑛 − 1) = |𝐴| arcs or edges, and a distance/cost matrix 𝐶 = (𝑐𝑖𝑗) associated with 

𝐴 find minimum Hamiltonian cycles or tours passing through every vertex once and only once.  

Currently the problem is considered to be NP-complete, but, nevertheless, two polynomial time 

deterministic algorithms solving it are known so far. The first one which uses a linear program model 

with 𝑂(𝑛9) variables and 𝑂(𝑛7) constraints was proposed by Diaby (2007). The second one that uses 

GFA was suggested by Voinov and Pya Arnqvist (2021). 

   The algorithm of “tsp_solver” (see Voinov and Pya Arnqvist (2021).p.21) solves both symmetric 

and asymmetric traveling salesman problems (sTSPs and aTSPs). It is based on solutions of the 0-1 

linear Diophantine equation with 𝑛(𝑛 − 1) positive integer elements of a cost/distance matrix. The 

algorithm finds solutions that represent Hamiltonian cycles of minimal length. For a sTSP the same 

cycles can be obtained by solving 0-1 equations with 𝑛(𝑛 − 1)/2 coefficients of, say, upper or lower 

triangular elements of the cost/distance matrix. Since the dimension of a corresponding equation is 

two times less than that for an aTSP, the computing time for a sTSP will be much less than that for 

the aTSP. Applying this approach the solution of sTSP can be done by the following algorithm: 

Alg.2. 

Step 1. Solve a corresponding assignment problem for the matrix 𝐶 to obtain a lower bound (𝐿𝑏) on 

the value of the optimal solution. Apply the “cheapest_insertion” algorithm to get an upper bound 

(𝐿𝑏). 

Step 2. Construct all solutions on exactly n parts for the equation (2.9) with 𝐵 = 𝐿𝑏 and coefficients 

that are entries of the lower triangular part of 𝐶.  

Step 3. Select solutions that satisfy conditions of the symmetric HC problem. 

Step 4. If there is a solution for the 𝐿𝑏, then stop. Otherwise increase the 𝐿𝑏 by one and go to step 2. 

Repeat until the 𝑈𝑏 is reached.  

Exp.5.  

For all 𝑛 ∈ [3,4, … ,10] two variants of the experiment were performed: one with 𝐵 = 100 and the 

second one with 𝐵 ∈ [24,26,… ,38].  17,800 random instances (12,300 for variant 1, and 5,500 for 



Voinov (2023)         CABJ 23(1), 12-31 

15 
 

the second one) were generated using the R-command “sample(1:B,n*n,replace=TRUE)”. Times (in 

sec.) needed to perform the Alg.2 were estimated by the R-command “microbenchmark()”.Numerical 

results of the simulations are provided in Table 5 (Mt7 for 𝐵 = 100, Mt8 for 𝐵 ∈ [24,26, … ,38])  and 

Figures 9 and 10 below. 

Table 5.      

n p=n+50n(n+1) Mt7  n B p=n+Bn(n+1)/2 Mt8 

3 603 0.0027605  3 24 147 0.0028344 

4 1004 0.0263374  4 26 264 0.0103420 

5 1505 0.1098751  5 28 425 0.0392810 

6 2106 1.3809700  6 30 636 0.8620258 

7 2807 10.627532  7 32 903 5.3806550 

8 3608 114.97300  8 34 1232 53.621300 

9 4509 958.17140  9 36 1629 487.22540 

10 5510 12247.590  10 38 2100 10432.820 

 

 

  

                              Fig. 9                                                                         Fig. 10 

     From these figures we see that the multiple R2 of polynomial fits (solid lines) is one for both 

approaches. At the same time for the exponential fits (dashed lines) the values of R2 are noticeably 

less than one. Fig.9 corresponds to the restricted (𝐵 = 100) versions of sTSPs. One sees that the 

computing times are bounded above by the degree 6 polynomial of 𝑝. Observation 4.2 of Garey and 

Johnson (1979), p.95 states: “if Π is NP-complete in the strong sense, then Π cannot be solved by a 

pseudo-polynomial time algorithm unless P=NP”. Thus the experimental results Mt7 are in favor of 

P=NP, and hence sTSPs are in P. Results Mt8 for the unrestricted version (see Fig.10) confirm this 

conclusion, since the computing times are bounded above by the degree 5 polynomial of 𝑝. 

 

Remark 7.1. Section 6 provides an experimental proof of the HC problem polynomial solvability. 

Since there is a polynomial time transformation from HC to TSP (ibid, p. 56), one immediately 

concludes that the sTSP is in P. 

Remark 7.2.  For the symmetric graph in Fig.8 (Remark 6.1) Alg.2 gives the optimal tour 3 1 6 9 4 2 

5 8 7 with the length 226.  
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Remark 7.3. Alg.2 produces the same optimal tours for problems stsp81-83 of Diaby (2007), p. 40 

thus conferming the correctness of his polynomial-sized linear programming formulation of the TSP.  

Remark 7.4. Alg.2 enumerates all existing optimal solutions for the sTSP. Two numerical examples 

with 6 and 2 optimal solutions are given for illustration in Appendix 2. They can be used as test 

instances for newly developed algorithms. 

8. Discussion and conclusions 

   Cook (2000), p.7 noted that “the obvious way (to prove that P=NP) is to exhibit a polynomial-time 

algorithm for 3-SAT or one of the other thousand or so known NP-complete problems”. Since 𝑃 ⊆
𝑁𝑃 (ibid, p.2), the same way can be used for problems in P. This means that whenever you have a 

polynomial-time algorithm for one of the problems in P (say, 𝐿2), then, if there is a polynomial-time 

reduction from 𝐿1 to 𝐿2 (Lemma 2.1 of Garey and Johnson (1979), p.34), this algorithm can be 

transformed into a corresponding polynomial-time algorithm for any problem of interest (say, 𝐿1 ∈
𝑃). This reduction will be denoted as 𝐿1 ⟹ 𝐿2. Garey and Johnson (1979), p.34 noted that for the 

class P this relation is polynomially equivalent to 𝐿2 ⟹ 𝐿1, i.e. 𝐿1 ⟹ 𝐿2 ⟺ 𝐿2 ⟹ 𝐿1. Assume, e.g., 

that you have a polynomial-time algorithm for Partition and want to transform it to a polynomial time 

algorithm for a TSP. Figure 11, which is a small part of the general class NP picture, shows that to do 

this you have to pass 5 transitive reductions. This problem can be simplified if you will use instead a 

polynomial-time algorithm for the HC problem.   

                                                                         ILP 

                                                                          ⇑ (p.245) 

Partition  ⟸ (p.223)   3DM   ⟸ (p.221)  3SAT   ⟸ (p.259)  SAT 

     ⇓ (p.223)                     ⇓ (p.224)                ⇓ (p.190) 

Subset sum                    N3DM                       VC (p.194)  ⇒ Clique 

    ⇓ (p.247)                ⇓ (p.224)            ⇓ (p.199) 

Integer knapsack         3-Partition                  HC 

                                          ⇓ (p.226)                ⇓ (p.211) 

                                  Bin packing                   TSP 

 

Fig. 11. A part of the class NP picture. Problems proved to be in P are boldfaced. Arrows show 

directions of polynomial-time reductions, proofs of which are cited on presented in parentheses 

pages of (ibid, Chapter 7). 

 

    Fig.11 shows that at least one polynomial-time algorithm of 14 NP problems can be converted to a 

corresponding polynomial-time algorithm for the rest 13 problems. This is possible due to the 

polynomial equivalence𝐿1 ⟹ 𝐿2 ⟺ 𝐿2 ⟹ 𝐿1. Correctness of this identity is confirmed, e.g., by two 

experimentally proved relations: 3-Partition ⟺ N3DM and HC ⟺ TSP. Thus all 14 NP problems in 

Fig.11 are in P. The same is true for the whole huge NP class of problems.  Summarizing all the above 

one may conclude that both the class NP and the class P exist and P=NP.    
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Appendix 1. R-script “two_parts” 

library(combinat); library(nilde); library(microbenchmark) 

genSample<-function(M,n,D){ 

x<-array(0,dim=n); x<-sample(1:10,n,replace=FALSE) 

y<-sum(x); z1<-y==2*D 

while(z1!=TRUE){ 

x<-sample(1:10,n,replace=FALSE); y<-sum(x); z1<-y==2*D 

} 

xx<-sort(x); d2<-n; d4<-M; d6<-D; d1<-list(xx,d2,d4,d6,y); return(d1) 

} 

k<-50 

Tnat<-rep(NA,k); Tcomb<-rep(NA,k); Tb<-proc.time()[3]  

set.seed(853) # set desired seed 

for(i in 1:k){ 

ns<-genSample(2,5,13) # specify desired instances 

d4<-ns[[3]] # M 

d6<-ns[[4]];d7<-ns[[1]];d2<-ns[[2]];d8<-ns[[5]] 

g<-get.subsetsum(a=d7,n=d6,M=d2,problem="subsetsum01") 

if(g$p.n>=2){ 

print(d7) # A 

print(sum(d7)) 

T30<-microbenchmark(g<-get.subsetsum(a=d7,n=d6,M=d2,problem="subsetsum01"),times=1L) 

T301<-T30$time/1000000000; b10<-g$solutions 

print(b10) # solutions by (1.10) 

print(d6) # D 

b11<-microbenchmark(Solnat<-as.matrix(b10[,colSums(b10)>=2]),times=1L) 

T302<-b11$time/1000000000; Tnat[i]<-T301+T302 

a2<-microbenchmark(a4<-combn(x=d7,m=d4,fun=NULL,simplify=TRUE),times=1L) 

T1<-a2$time/1000000000; a3<-as.matrix(a4) 

a5<-microbenchmark(Solcomb<-as.matrix(a3[,colSums(a3)==d6]),times=1L) 

T2<-a5$time/1000000000; Tcomb[i]<-T1+T2 

print(Solcomb) # first part (A')of the solution by ICA 

a2<-microbenchmark(a4<-combn(x=d7,m=(d4+1),fun=NULL,simplify=TRUE),times=1L) 

T1<-a2$time/1000000000; a3<-as.matrix(a4) 

http://www.math.rutgers.edu/~zeilberg/mamarimPDF/pnp.pdf
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a5<-microbenchmark(Solcomb<-as.matrix(a3[,colSums(a3)==d6]),times=1L) 

T2<-a5$time/1000000000; print(Solcomb) # second part (A-A') of the solution by ICA 

}; } 

Te<-proc.time()[3]; print(Te-Tb) 

Tnat<-Tnat[!is.na(Tnat)] 

k10<-length(Tnat);k10 

mtnat<-mean(Tnat); stdmtnat<-var(Tnat)^0.5/k10^0.5 

stdmtnat/mtnat*100 

message("Mtnat:",mtnat);var(Tnat) 

Tcomb<-Tcomb[!is.na(Tcomb)] 

k3<-length(Tcomb);k3 

mt1<-mean(Tcomb); std.mt1<-var(Tcomb)^0.5/k3^0.5 

std.mt1/mt1*100 

message("Mean Tcomb:",mt1);var(Tcomb)  

 

 

Appendix 2. Examples of several optimal solutions 

         [,1]  [,2] [,3] [,4]  [,5] [,6]  [,7] [,8]  [,9] [,10]                        [,1]  [,2] [,3]  [,4]  [,5]  [,6]  [,7]  [,8] [,9] 

 [1,]  999   12   25   27   10   18   24   13   22    21                  [1,]  999   72   91  126  111   99  109   45   94 

 [2,]   12  999   24   25    9   37   14    30   16    24                  [2,]   72  999  116   83   77   72   78  170  101 

 [3,]   25   24  999   20   11   32   19   25   23    18                  [3,]   91  116  999  109   20   65   29   71  141 

 [4,]   27   25   20  999   14   16   32   24   18    13                  [4,]  126  83   109  999  76  123  159  90  155 

 [5,]   10    9   11   14   999   24   26   23   16    28                  [5,]  111   77   20   76  999   35    40   96   60 

 [6,]   18   37   32   16   24  999   22   17   25    34                  [6,]   99   72   65  123   35  999    81   27   92   

 [7,]   24   14   19   32   26   22  999   15   27    23                  [7,]  109   78   29  159   40   81  999  109  127 

 [8,]   13   30   25   24   23   17   15  999   17    16                  [8,]   45  170   71   90   96   27   109  999  146 

 [9,]   22   16   23   18   16   25   27   17  999    32                  [9,]   94  101  141  155   60   92 127  146  999 

[10,]   21   24   18   13   28   34   23   16   32   999                 $tour.1 

$tour.1                                                                                     [1] 2 1 9 5 3 7 6 8 4   

 [1]  6  1  8  7  2  9  5  3 10  4                                                  $tour.2 

$tour.2                                                                                     [1] 8 1 9 2 4 5 3 7 6 

[1]  2  1  6  4 10  3  5  9  8  7                                                   [1] 556 # Tours’ length 

$tour.3                                                                                     [1] 560 # Upper bound 

 [1]  5  1  6  8  7  2  9  4 10  3                                                  [1] 485 # Lower bound 

$tour.4                                                                                      

 [1]  5  1  6  4 10  8  9  2  7  3 

$tour.5 

 [1]  5  1  8  9  2  7  6  4 10  3 

$tour.6 

 [1]  2  1  5  3 10  4  6  7  8  9 

[1] 150 # Tours’ length 

[1] 153 # Upper bound 

[1] 146 # Lower bound 

 

 


